SBM 2014-5

Hydrogenation – 2 Lectures

John Brown

L1 Hydrogenation of Alkenes

The main elements involved as catalysts in homogeneous hydrogenation are shown

	CROUR		PF	-RI		OIC.	ТΔ	RI	F ()F	TH	FF		M	=N	rs				
	GROUP																			
	1 10079												mip.//www.kg-spin.n/perioani/en/							
8	1 1.00/5			RELATIVE ATOMIC MASS (1)			🗌 🔝 м	🧾 Metal 🔛 Semimetal			Nonmetal							4.0020		
ER.	H		GRO	SUP IUPAC GROUP CAS			Alkali metal			16 Chalcogens element								не		
-	HYDROGEN	2 11A						Alkaline earth metal		Halogens element			13 IIIA	14 IVA	15 VA	16 VIA 17 VIIA		HELIUM		
	- 3 6.941 4 9.0122 ATOMIC N			10MBCK 3 10.811			🗡 🔝 Те	Transition metals		18 Noble gas			5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180		
2	Li	Be	S	YMBOL B				Lanthanide STA			DARD STATE (25 °C; 101 kPa)			C	N	0	F	Ne		
	LITHIUM	BERYLLIUM	BOR					C Actinide		Ne - gas Fe - solid			BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON		
	11 22.990 12 24.305			EI EVENT MAME			//	Ga			- liquid Tc - synthetic		13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948		
3	Na	Mg		ELE			/		- VIIIB -	_ \			Al	Si	Р	S	Cl	Ar		
	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 / VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON		
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80		
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEI	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON		
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	14 101.07	102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29		
5	Rh	Sr	V	Zr	Nh	Mo	The	Ru	Rh	Pd	Δσ	Cd	In	Sn	Sh	Те	T	Xe		
	RUBIDIUM	STRONTILIM	YTTRUM	ZIRCONILIM	NIOBILIM	MOLYBDENIM	TECHNETIIN	RITHENIUM	RHODIUM	PALLADIUM	SILVER	CADMILIM	INDIUM	TIN	ANTIMONY	TELLIRIUM		XENON		
	55 132.91	56 137.33	57.71	72 178.49	73 180.95	74 183.84	75 186.11	76 190.83	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.96	84 (209)	85 (210)	86 (222)		
6	Co	Do	La-Lu	Uf	То	XX/	Do	0	Im	Dt	A	Ha	TI	Dh	Di	Do		Dn		
~	CS	Da	Lanthanide	п	14	VV	пе	US	11	Γι	Au	ng	11	F D	DI	ru	At	NII		
	CAESIUM	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON		
7	o/ (223)	00 (220)	89-103	104 (201)	105 (202)	100 (200)	107 (200)	108 (2//)	D (208)	110 (281)	11 (2/2)	TT T T		114 (289)						
,	Fr	Ка	Ac-Lr	IKII	mp	Sg	IRIU	IIIS	STIME		Uuu	Uub		Quq						
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM	\	UNUNQUADIUM		\		3		
	/																			
(1) Pur	Appl. Chem., 73, No. 4, 667-683 (2001)			57 138.91	58 140.12	59 140 91	60 144 24	61 (145)	62 150.36	63 151 96	64 157.25	65 158 93	66 162 50	67 164.93	68 167.26	69 168 93	70 173.04	71 174.97		
Rel	ative atomic mass is shown with five			To	C	D	NJ	IDm	C	Tran	Cd	Th	Der	IIa	TT an	T	Vh	T		
nuc	lides, the valu cates the mass n	e enclosed in umber of the lor	enclosed in brackets ber of the longest-lived		Ce	Pr	ING		Sm	Ľu	Ga	ID	Dy	но	Er	Im	XD	Lu		
isot	ope of the element	nt.	ments (Th. Pa. and U)		LANTHANUM CERIUM PRASECOYMUM NEODYMUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMUM ERBIUM THULIUM YTTERBIUM LUTH													LUTETIUM		
do	have a charact	eristic terrestria	al isotopic c weight is	80 (227)	00 222.04	01 221 04	97 229 02	2 238 03 93 (237) 94 (244			95 (243) 96 (247) 97		08 (251)	00 (252)	100 (257)	101 (259)	102 (250)	103 (262)		
tab	tabulated.			(221)	TCL.	D-	TT	DIm	10000	A	Charles	1011-	(LSI)	103 -	100 (257)	D (1.30)	NT (235)	TT ===		
	/				In	Pa	U	14lb	IPUI	A/IM	Cm	TRAIK	CI	ILS	TRIDD	IATIQI	1/30	1LP		
Edi	lor: Aditya Vardha	an (adivar@netl	linx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM		

General characteristics of OM catalysis

Reactive intermediates are *coordinatively unsaturated*, with 12, 14 or 16 electron valence shells

Coordination numbers are commonly 2 – 6, with square planar (4) and trigonal bipyramid or square-based pyramid (5) common

The key metals have variable oxidation states with (I - III) or (0 - II - IV) frequent; most (not all!) reactions involve diamagnetic states

The Key Metals in Asymmetric Hydrogenation

Rhodium

The basic reactions in OM catalysis are simple

Ligand association and dissociation: M + L 🖛 ML PPh₃ $Ph_{3}P$ Ph_{3} $Ph_{3}P - Pd$ $Ph_{3}P -$ PPh₃ Example: solid state solution cis-Ligand Migration Example: Oxidative addition / reductive elimination $\begin{array}{c} \mathsf{PPh}_{3} & \mathsf{H}_{2} \\ \mathsf{CI} - \mathsf{Ir}^{\mathsf{V}} - \mathsf{C} \equiv \mathsf{O} \end{array} \xrightarrow{\mathsf{H}_{2}} \mathsf{H} - \mathsf{Ir}^{\mathsf{V}} - \mathsf{C} \equiv \mathsf{O} \\ \mathsf{Ph}_{3} \mathsf{P} \end{array} \xrightarrow{\mathsf{Ph}_{3}} \mathsf{Ph}_{3} \mathsf{P} \xrightarrow{\mathsf{Ph}_{3}} \mathsf{CI}$ Example:

Hydrogenation of alkenes and alkynes is favoured energetically

Metal surfaces (especially of platinum metals) activate hydrogen and are good hydrogenation catalysts

Activation of hydrogen without metals is very rare but examples do exist

Make the reaction very exothermic through a high energy starting material – a bulky carbene:

Frustrated Lewis Pairs (acid and base – one accepts H⁺, the other H⁻)

Dihydride and dihydrogen complexes of known structure – this show us how dihydrogen can bond to a transition metal.

Vaska's compound 16 e

Dihydride 18 e

Dihydrogen complex 18 e

The eta-2 dihydride is a probable intermediate in the activation of H_2 by a metal complex

H₂ antibonding orbital acts as acceptor.

After coordination the H-H bond is longer and weaker

H₂ bonding orbital acts as donor.

Phosphines and alkenes (also alkynes) are bound to the metal through donor and acceptor orbital interactions

In the course of the reaction, aided by phosphorus ligands, the metal must be bound to both hydrogen and the alkene:

Wilkinson's catalyst (1966)- the first practical homogeneous hydrogenation catalyst

How does Rh(III) become Rh(I) In this procedure; there must be a reducing agent?? How could ethanol participate?

idealised square-planar structure

16e -coordinatively unsaturated

Homogeneous hydrogenation with Wilkinson's catalyst is selective for less substituted double bonds – chemoselectivity

Fragment of steroid nucleus

What would happen with a heterogeneous catalyst like Pd/C?

Examples of simple rhodium homogeneous hydrogenations - control of stereochemistry

Alkynes give cis-alkenes:

Norbornadiene is removed in the first hydrogenation cycle

Alkenes are reduced by cis- addition of dihydrogen

Requirements for successful homogeneous hydrogenation

The catalyst must be coordinatively unsaturated, and undergo rapid addition and elimination reactions.

The hydrogen affinity must be strong enough to complex H₂, but not too strongly that the dihydride is too stabilized.

The substrate – alkene, alkyne or carbonyl compound – must be able to bind to the transition metal centre adjacent to bound hydrogen.

Intermediates in the catalytic reaction, and especially the alkylhydride, must break down rapidly.

Rapid ligand addition and dissociation is helpful.

Origins of and requirements for asymmetric hydrogenation of alkenes

(Rhodium) Asymmetric Hydrogenation was the first successful example of high enantioselectivity using a purely chemical catalyst:

Success depends on asymmetry in the product that arises from asymmetry in the ligand of cat*. The atom substituted by H, X and Y is a stereogenic centre; products 1 and 2 are **enantiomers**.

The initial observation (above) and the first successful development (below) in asymmetric hydrogenation

Kagan's DIOP catalyst for the synthesis of Nacetylphenylalanine – first use of **chelating** diphosphine

72% e.e. (R)

The Monsanto process for the synthesis of dehydroamino acids (WS Knowles) post 1975 (NB catalyst precursor)

Chelating ligand

Medical use of L-DOPA?

The ³¹P NMR species observable in the presence of H₂ - only at low temperature

Rhodium asymmetric hydrogenation has been a rich source of reactive intermediates; all cations here:

Transient product complex

UNIVERSITY OF THE AT A SUBJECT OF THE AND A CONTROL OF THE ADDRESS AND A C

Ligand summary. Types of chelate ligand, all with twofold symmetry axes (C₂)

(R,R)-DIOP

First chelating chiral biphosphine;backbone chirality

Monsanto ligand for L-DOPA synthesis; P-chirality

(S)-BINAP

Best known of all chiral ligands; axial chirality

(S,S)-DUPHOS

Very effective use of alpha-phospholane substituents

(S,S)-PHANEPHOS

Example of planar chirality

(R,R)-BisPP*

Simple concept; high enantioselectivity Successful asymmetric hydrogenation with rhodium complexes = polar functional group that can also bind to the metal to form a chelate

Hydrogenation of simple enamides with a rhodium catalyst and DUPHOS-type ligand

as Rh ligand

Examples of drug precursors synthesised by asymmetric hydrogenation. Need to vary ligand to optimise results

Asymmetric hydrogenation as the key step in the synthesis of antiobesity drug Taranabant

Debra J. Wallace,*,† Kevin R. Campos,*,† C. Scott Shultz,*,† Artis Klapars,† Daniel Zewge,† Brian R. Crump,‡ Brian D. Phenix,‡ J. Christopher McWilliams,† Shane Krska,† Yongkui Sun,† Cheng-yi Chen,† and Felix Spindler§ Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, U.S.A., Department of Chemical Process DeVelopment and Commercialization, Merck Research Laboratories, Rahway, New Jersey 07065, U.S.A., and SoNias AG, P.O. Box 4002, Basel, Switzerland; Organic Process Research & Development **2009**, *13*, 84–90

Ru(BINAP) catalysed hydrogenations have a wider scope than Rh-catalysed hydrogenations

BINAP is the key to successful ruthenium hydrogenations

Ruthenium catalysed hydrogenation of unsaturated carboxylic acids is effective- mechanism 1

with D₂ in CD₃OD

The two hydrogens are delivered distinctly – the first from H₂, the second from solvent

The two hydrogens are delivered distinctly – the first from H₂, the second from solvent

Basics of Iridium asymmetric hydrogenation; P-N catalysts, chelate forming

Crabtree's original catalyst 1977-1980. Fast hydrogenation even of tetrasubstituted alkenes in non-protic solvents.

Never used commercially; limited turnover before deactivation

Pfaltz introduced a family of chelate PHOX-based analogues for asymmetric hydrogenation. Similar limitations; high pressures needed for satisfactory e.e.s

High sensitivity to water; annulled by switching to the hydrophobic BARf counter-ion.

Iridium asymmetric hydrogenation follows naturally from the Crabtree catalyst (Pfaltz; >20 years later)

NB - no chelating groups in the substrate

The counter-ion is critical, and the solution must be anhydrous as well

A hydrogenation-based enantioselective synthesis of Vitamin E. Two crucial stereocentres introduced without directing groups

Some examples of asymmetric hydrogenation with Ir catalysts - di, tri- and even tetrasubstituted alkenes

Synthetic range of asymmetric hydrogenation

Rhodium – valuable for enamides, dehydroamino acids – huge variety of ligands available; practical applications involve optimization of catalyst as well as reaction conditions. Phosphoramidites as mono-P ligands

Ruthenium – much wider variety of functional groups efficient in metal binding, so more versatile. Catalysis with BINAP or related ligands designed on the same principle.

Iridium – works for cases where the alkene lacks binding groups. Most successful ligands form PN chelates.

What happens if we move the stereogenic centre from the ligand to the substrate?

Asymmetric hydrogenation

Directed hydrogenation

Directed hydrogenations – alcohol as directing group (could be C=O of ester, amide, etc.

see: Hoveyda, Evans, Fu Chem. Rev. 1993, 93, 1307; Brown, Angew. Chem. Int. Ed., 1987, 26, 190.

Analysis of ground state binding with model ligand reveals selectivity that matches the results of hydrogenation

Appendix – Properties of phosphine ligands

Following 3 slides show variations at phosphorus a) Different phosphines possess different electronic effects

	Increasing donor ability	
L in L-Ni(CO)3:	VCO	R
PBu_3^t	2056.1	R
PMe ₃	2064.1	P P
PPh ₃	2068.9	*
$P(OMe)_3$	2079.5	Nimus a
$P(OPh)_3$	2085.0	
PF ₃	2110.8	CO CO

Note different names: PR3 - phosphine; P(OR)3 - phosphite

We can measure IR stretching frequencies: The more electron-withdrawing the ligand, the more back-donation from the metal to P. This affects the CO bond:

$$PR_3 - M - C \equiv O$$

$$PR_3 - M = C \equiv O$$

$$V higher$$

$$V lower$$

b) The bulk of a phosphine ligand van be expressed through its cone angle

Figure 4. (a) Ligand angle measuring device; (b) the cone angle, from ref 2.

Me

Cone

angle

Me

Me

120°

c) Bite angles P-M-P provide an important parameter for the comparison of different chelate ligands

Trivalent phosphorus is stereochemically far more stable than trivalent nitrogen; allows P-stereogenic ligands

What causes this remarkable difference?

SBM 2014 Lecture 2

John Brown

Hydrogenation of Ketones and Imines

Transfer Hydrogenation

Dehydrogenation and Dehydrogenative Coupling

Interception of Reactive Intermediates

Increased versatility for Ru catalysis – many ketones are hydrogenated in high enantiomer excess

DG is a directing group (lone pair bond to Ru catalyst)

Ru hydrogenation of **ketones** provides an example of **double asymmetric** induction

e.e. of final product is enormous

Enantiomer ratio $S, S : R, R - 98^2 : 2^2 = 2400 : 1; e.e. = 99.9 \%$ 2 x 2 (R,R) UNDERSTORE OTHER RATIO S,S : meso = ca 50 : 1 OXFORD High diastereoselectivity and fast keto-enol tautomerisation lead to **Dynamic Kinetic Resolution** from a racemic reactant.

Ruthenium has provided asymmetric catalysts for both ketone and alkene reduction

Takasago [41,42,49]: intermediate for carbapenem (antibiotic); 50-120 t per year Success factors: dynamic kinetic resolution, ligand fine tuning

Enantioselective catalysis in fine chemicals production

H.U. Blaser*, F. Spindler, M. Studer

Solvias AG, Postfach, CH-4002 Basel, Switzerland

Applied Catalysis A: General 221 (2001) 119-143

P₂N₂Ru complexes; a further breakthrough in Ru catalysis of hydrogenation

1st generation catalyst

2nd generation catalyst

Completely different mechanism

In the presence of base, metal hydrides are formed that change the reaction pathway

In B; Ru-H is formed from Ru-Cl by the base; how?

The method is useful for asymmetric reductions in the absence of a directing group

<u>Getting close to a universal method for selective reduction of ketones</u>

C=C Double bonds are unaffected; simple ketones are reduced by the same catalysts

Hydrogenation with P_2N_2Ru complexes. How it works 1. Consider the essentials.

The catalyst is introduced as a Rh(II) dichloride with both ligands in place. A strong base is needed in order to activate this pre-catalytic state.

The key reaction involves HCl elimination by the base, then H_2 addition – basic equation:

How it works 2. The precatalyst needs to be reduced first to replace CI– by H– to make the active catalyst. The process can be repeated to make a Ru dihydride

How it works 3. Once the catalyst has formed a very simple mechanism ensues; the ketone is never bound to Ru

How it works 4. With a single enantiomer catalyst the configuration of the product is determined by stereoselection in the H₂ transfer step

re-face

si-face

Iridium catalysts are also effective for the reduction of imines (NB PP catalysts)

Classic example is the synthesis of the herbicide metolachlor produced on a multi-ton scale

Iridium catalysis has provided the most substantial scale-up in asymmetric hydrogenation Metolachlor; herbicide

Enantioselective catalysis in fine chemicals production

H.U. Blaser*, F. Spindler, M. Studer

Solvias AG, Postfach, CH-4002 Basel, Switzerland

Applied Catalysis A: General 221 (2001) 119-143

Many heterocyclic systems are responsive to asymmetric hydrogenation

PPh₂

PPh₂

Bu*t*

1*

Generally high pressure of H_2 is needed, and I_2 promotes the reaction

Y-G Zhou et al., J.Am.Chem.Soc., 2003, 105, 10536

Transfer hydrogenation provides a neat solution under ambient conditions; the reactant is activated by N-protonation

<u>J. Xiao</u> et. al. Angew. Chem. 2009, *48*, 6524

Basic principles of a metal-catalysed transfer hydrogenation

Transfer hydrogenation from isopropanol or formic acid

Consider the formal catalytic cycle using i-PrOH as the reducing agent; a displaced equilibrium

Equilibrium is driven by mass action

Noyori and Ikariya found an effective and enantioselective Ru-catalyst family (also other arenes)

Previous work had been largely Ir complex based and less effective;

<u>The reaction mechanism could be "classical" or a concerted</u> <u>hydrogen transfer. No evidence for a Ru-alkoxide has ever been</u> <u>found</u>

Compare P₂N₂Ru catalysts + H₂ any differences?

The range of transfer hydrogenation can be demonstrated from the selection below

Reducing agent may be i-PrOH or NEt₃/HCO₂H azeotrope

Dehydrogenation. Reverse of hydrogenation is possible (in principle) but we must include an energy sink

The dehydrogenation of an alkene is highly endothermic $\Delta H_0 = ca. 120 \text{ KJmol}^{-1}$

An acceptor alkene can make the reaction mildly exothermic

Cyclooctane is more strained than cyclohexane - why is this?

Pincer iridium complexes have provided the most successful application of catalytic dehydrogenation

UNIVERSITY OF

catalyst for dehydrogenation

Even in this case the reaction requires high temperatures and turnovers are limited (ca. 200)

The concept of "borrowing hydrogen" uses the same catalyst for both the oxidation and reduction steps. Knoevenagel step is not catalysed

Conditions: 110 °C, 2 mol% Ir catalyst, 15 mol% KOH, 15 h. A and B

(or 10 minutes μwave, 110 °C)

An interesting series of dehydrogenative couplings were discovered by Milstein and co-workers from 2007 onwards

A pincer Ru complex with a labile C-H is activated to loss of hydrogen

16e; isolable

Why is the original dehydrogenation product stabilised by H-transfer?

The N-Ru bond is also labile leading to easy ligand displacements; primary alcohol and amine to imine by a β -elimination route (Step 1)

Step 2. Another oxidative step converts the hemiaminal into an amide; cycle is completed by H₂ loss

How many different molecules of catalyst are involved in the OXFORD cycle? Amide - formed catalytically from alcohol and amine Here's a summary of the sequence of reactions

1. First activate the primary alcohol (-H₂):

2. Then activate the hemiaminal equilibrium (without dissociation of RCHO):

3. Finally dehydrogenate the hemiaminal to give the amide product:

Overall catalytic reaction and conditions

(secondary alcohol \rightarrow ketone, lower yield)

Consider the individual steps in a hydrogenation reaction

Is it possible to intercept the ensuing Rh-alkyl species?

Intercepting the intermediate in hydrogenation (Krische)

Best ligand is tri(2-furyl)phosphine; 74% yield, 95% rac syn-diastereomer

Intercepting the intermediate in transfer hydrogenation (Krische)

M. J. Krische et. al., Chem. Comm. 2009, 7278; Angew. Chem. Int. Ed., 2009, 48, 34 (reviews)

Two important concepts for catalytic reactions in synthesis

Atom economy describes the conversion efficiency of a chemical process in terms of all atoms involved. In an ideal chemical process all atoms of the reactants appear in the product.

Redox economy is defined as the minimization of the number of non-strategic (those that do not set stereochemistry or are not skeleton-building) or corrective oxidation and reduction steps in synthesis.

