Peptide chemistry

Yssy Baker ysobel.baker@chem.ox.ac.uk

Talk outline

- Introduction to peptide chemistry
 - Peptides and proteins
 - Peptide synthesis
 - Protecting group strategies
- Applications of peptide chemistry
 - Synthesis and semisynthesis of modified proteins using chemical ligation
 - Cyclic peptides- analogues of marine snail venom for medicinal chemistry
 - Chemical probes- synthesis of modified ubiquitin for proteomic studies

Peptides and proteins

chain

Peptide: short chain of two or more amino acids linked by amide bondsProtein: longer polymer of amino acids made of peptide subunits (polypeptides)

Exact number of amino acids for defining a peptide or protein is arbitrary

Amino acids

Importance of peptides and peptidomimetics

- Amide bonds are ubiquitous in nature
- Many natural products have a peptide framework
- Broad spectrum of biological activity
- Non-natural amino acid mimics paramount for drug discovery and scientific advancement
- Therapeutic agents- many peptide based therapeutics in development
- Chemical probes- studying biological systems

Synthesis solution phase

- Traditional approach
- Side chains often require protecting groups
- Limited by purification after each step, yields and solubility of intermediates

Solid Phase Peptide Synthesis (SPPS)

- long peptides could be synthesized without issues of solubility
- Fast: impurities and unreacted reagents removed by washing and filtering the resin
- High yielding as large excesses of reagents can be used
 Merrifield awarded the Nobel Prize in 1984

Boc SPPS: Protecting group strategy

0'1 or 2(`

Boc-Asp(OcHex)-OH

Boc-Glu(OcHex)-OH

Boc-Lys(2-CIZ)-OH

н

0 1 or 2[\]

Boc-Asn(Xan)-OH

Boc-Gln(Xan)-OH

|| 0

R

Boc-Ser(Bzl)-OH

Boc-Thr(Bzl)-OH

 \cap

ЮH

Ò

ΗŃ

Boc-Arg(Tos)-OH

ЮH

NH O

N H ő

ЮH

0

Boc-Tyr(2-BrZ)-OH

Boc-His(Tos)-OH

Fmoc SPPS: Protecting group strategy

Fmoc-Cys(Trt)-OH

Fmoc-Asn(Trt)-OH Fmoc-Gln(Trt)-OH Fmoc-Arg(Pbf)-OH

Fmoc-His(Trt)-OH

Peptide bond formation

General strategy for peptide bond formation

commonly used active esters

symmetric anhydride

pentafluorophenyl active ester

hydroxysuccinimido active ester

Peptide bond formation: Carbodiimides

DIC

insoluble urea by-product removed by filtration not suitable for SPPS soluble by-product can be removed by washing resin in SPPS

useful for solution phase reactions water soluble by-product removed in work-up

Peptide bond formation: Additives

Additives: accelerate coupling reaction and suppress by-product formation

Peptide bond formation: Coupling agents

HBTU

HATU

вор рувор phosphonium reagents

uronium-imonium reagents

Structures contain the additive

HBTU is the more cost effective alternative and is acceptable for most coupling applications

 PF_6^-

HATU is the most reactive uronium reagent, but expensive

More information: http://documents.bachem.com/coupling_reagents.pdf

Comparing Boc and Fmoc SPPS

Fmoc/tBu

- Orthogonal N^{α} /side chain protection
- Only requires TFA for final cleavage

- Deprotection and coupling can be monitored by UV chromophores
- Final cleavage possible in SPPS reaction vessel

especially good for acid sensitive peptides & derivatives

Boc/Bzl

- N^{α} /side chain protection both acid labile
- Requires repetitive TFA cleavage and a final HF cleavage
- Monitored only by Ninhydrin test

 Requires specialist equipment for final cleavage

base labile peptides, "difficult sequences" repetitive TFA treatment impedes aggregation

Peptide synthesis setup

manual

multichannel

microwave

Current limitations of peptide synthesis

- SPPS is limited by yields
- Upper limit typically around 70 amino acids: if a 99% yield per step: final yield <50% for a 70 amino acid chain
- Synthetic difficulty also is sequence dependent; typically amyloid peptides and proteins are difficult to make.
- Cost- large excess of reagents and need for protecting groups make large scale synthesis expensive and not environmentally friendly

Chemical synthesis of longer peptides and proteins

Native chemical ligation (NCL)

- Native chemical ligation can also be used in the assembly of synthetic peptide fragments to give of long peptides and proteins
- Allows for controlled location of modifications

Example: Orthogonal ligation to give semisynthetic Rnase A

 $[^{13}C', ^{13}C^{\alpha}, ^{15}N]$ proline was inserted at position 114 $k_{cat}/K_{M} = 0.94 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1}$ (recombinant DNA technology $k_{cat}/K_{M} = 1.1 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1}$

B. L. Nilsson, R. J. Hondal, M. B. Soellner, R.T. Raines J. Am. Chem. Soc. 2003 125 (18), 5268-5269

Peptide ligation using the Staudinger ligation

Synthesis of C-terminal phosphinothioester peptide "safety-catch" linker

B. L. Nilsson, R. J. Hondal, M. B. Soellner, R.T. Raines J. Am. Chem. Soc. 2003 125 (18), 5268-5269

Synthesis of cyclic peptides

- applications that range from drug discovery to nanomaterials
- biostability and resistance to proteolytic digestion in physiological environments
- exhibit high potency and low toxicity
- Many cyclic peptides are notoriously difficult to prepare

BH3 stapled peptide (blue) bound to MCL-1 N. S Robertson et. al. *Rep. Org Chem.*, **2015**, *5*, 65-74

Cyclic RGD peptide binding integrin J. P. Xiong et al. *Science* **2002**, *296*,151-155

Types of cyclisation

side chain to head

side chain to tail

α -Conotoxins

- Peptide neurotoxins isolated from the venom ducts of carnivorous marine cone snails
- 12–20 amino acids with a conserved cysteine framework
- Potent selective binders of certain nicotinic acetylcholine receptor subtypes
- Poor biochemical stability and resistance to proteolytic digestion

Book: Peptide Modifications to Increase Metabolic Stability and Activity [electronic resource]

α-Conotoxin synthesis: non-directed cyclisation

α-Conotoxin synthesis: Directed cyclisation

globular

1

α-Conotoxin synthesis: Selenocysteine directed folding

α -Conotoxin synthesis: Head to tail cyclisation

- improved stability
- retained pharmacological activity of the native conotoxin
- loss of flexibility, while preserving key structural characteristics

α-Conotoxin synthesis: Head to tail cyclisation

Chemical synthesis of ubiquitin, ubiquitin-based probes, and diubiquitin

Ubiquitin is a small protein that is found in almost all cellular tissues in humans and other eukaryotic organisms

Post-translational modification of proteins with ubiquitin controls many functions including:

- protein breakdown by the proteasome
- cellular localization of proteins
- transcriptional activity
- DNA repair

asome

Sequence of ubiquitin

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

Post-translational modification of proteins with ubiquitin

Nature Reviews | Molecular Cell Biology

Nature Reviews Molecular Cell Biology 2009, 10, 755-764

Chemical synthesis of ubiquitin

- 76 amino acid protein
- Chemical synthesis required to generate a library of modified protein
- Attempts at Fmoc SPPS failed to give the defined product

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIF<u>AG</u>KQLE<u>DG</u>RTLSDYNIQKESTLHLVLRLRGG

F. el Oualid et. al. Angew. Chem. Int. Ed., 2010, 49 (52), 10149–10153

Chemical synthesis of modified ubiquitin

• N- terminus modification can be achieved before cleavage

F. el Oualid et. al. Angew. Chem. Int. Ed., 2010, 49 (52), 10149–10153.

Chemical synthesis of modified ubiquitin

a) HFIP/CH₂Cl₂, 30 min, RT; b) PyBOP, DIPEA, Nu, CH₂Cl₂, 16 h, RT; c) TFA/*i*Pr₃SiH/H₂O, 3 h, RT.

F. el Oualid et. al. Angew. Chem. Int. Ed., 2010, 49 (52), 10149–10153.

Chemical synthesis of a modified diubiquitin probe to measure deubiquitylating enzyme activity

Deubiquitylating enzymes (DUBs) are proteases that remove ubiquitin from a substrate

DUBs have a catalytic Cys residue in the active site

M. P. C. Mulder, T. El Oualid, J. ter Beek, H. Ovaa, *ChemBioChem*, **2014**, *15*, 946–949 J. M. Chalker, L. Lercher, N. R. Rose, C. J. Schofield, B. G. Davis, *Angew. Chem. Int. Ed.* **2012**, *51*, 1835–1839

Application of modified diubiquitin probe

- The diubiquitin probe was fluorescently labelled during Fmoc-SPPS
- After arming, the resulting fluorescent probe was incubated with cell lysates and analysed by SDS-PAGE
- The fluorescent intensity of the bands can then be used to measure deubiquitylating enzyme activity

M. P. C. Mulder, T. El Oualid, J. ter Beek, H. Ovaa, *ChemBioChem*, **2014**, *15*, 946–949

Emil Fischer's 1902 Nobel Prize lecture

"Of the chemical aids in the living organism the ferments—mostly referred to nowadays as enzymes- are so pre-eminent that they may justifiably be claimed to be involved in most of the chemical transformations in the living cell. The examination of the synthetic glucosides has shown that the action of the enzymes depends to a large extent on the geometrical structure of the molecule to be attacked, that the two must match like lock and key. Consequently, with their aid, the organism is capable of performing highly specific chemical transformations which can never be accomplished with the customary agents. To equal Nature here, the same means have to be applied, and I therefore foresee the day when physiological chemistry will not only make extensive use of the natural enzymes as agents, but when it will also prepare synthetic ferments for its purposes."

Fischer's vision is becoming reality